
MATHEMATICS OF COMPUTATION 
VOLUME 41. NUMBER 163 
JULY 1983. PAGES 229-234 

An Application of Matrices Over Finite Fields 
to Algebraic Number Theory 

By Frank Gerth III 

Abstract. This paper ultilizes properties of matrices over finite fields to obtain information 
about the rank of the p-class group of certain algebraic number fields. 

1. Introduction. Let K be a Galois extension of the field of rational numbers Q of 
degree p, where p is a prime number. Let A denote the p-class group of K, i.e., the 
Sylow p-subgroup of the ideal class group of K. (For p = 2, we shall be using the 
Sylow 2-subgroup of the strict (or narrow) ideal class group of K.) Let v denote the 
rank of A; i.e., v = dimF(A/pA), where Fp is the finite field with p elements. Let t 
denote the number of primes that ramify in K/Q. It is a classical result that 
v = t - 1 if p = 2 (see [l,p. 247]), and in general t - 1 ? v s (p - 1)(t - 1). (See 
[5, Satz 30].) When t = 1, we get v -0 for all p. For fixed p > 3 and t > 2, we shall 
show that v is usually equal to t - 1 and that in a probabilistic sense the expected 
value of v, denoted E(v), satisfies t - 1 < E(v) < t. The techniques we use are 
similar to some of the techniques used by Redei in [6] to specify the 4-rank of A in 
the quadratic case. In Section 2 we shall develop some results we need about 
matrices over finite fields, and in Section 3 we shall apply the results in Section 2 to 
obtain information about v. 

2. Ranks of Matrices Over Finite Fields. Let M be an m X n matrix with entries in 
the finite field Fp, where m < n and p is a prime number. Next let Nr be the number 
of these m X n matrices M over Fp with rank M = r, where 0 < r < m. 

PROPOSITION 2.1. 

Nr [fl( p _.p] ) j E ( tII pS ) 

y= 1 il ~~+ ***+lr--<t?-r s= 1 
each i5 aO 

(For r = 0, we interpret this as No = 1.) 

Proof. Let M be an m X n matrix over Fp with rank M r. Let ri be the rank of 
the first i rows of M, 1 < i < m. Then r1 < r2 < - * * ? rm =r. Thus to each M with 
rank M = r, we have associated an ordered m-tuple (rl, r2,.. ,rm). To determine Nr, 
it suffices to determine all possible m-tuples (rl,...,rm) and the number of M 
associated with each m-tuple. Let rk be the first term in (r,,. .. , rm) with rk = s for 
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1 < s < r. Let io = kI-1, is = k+- - 1 for 1 < s < r - 1, and ir m - kr. 
Then r= rir, = 0 (if k1 > 1), and for s 1,...,r, we have rk, r. ?1 - 

= rk,+i = s. We note that each is > 0, and 

(2.1) io + i, + +ir =m-r. 

Also the (r + 1)-tuple (io, il,... ,ir) determines the r-tuple (k,..kr), which de- 
termines the m-tuple (r1,... ,r,,,). Now how many matrices M are associated with a 
given (r,,.. . ,r,,1), or equivalently, with a given (iUO 91I. ... ,i)? For rows 1,...,io, 
there is only one possibility, namely rows with all entries equal to 0. For row k1 there 
are p" - 1 possibilities (only the row with all entries equal to 0 is excluded). Each of 
rows kI + 1,... , kI + i1 must be contained in the space spanned by row kI, and 
hence there are p possibilities for each such row. In general there are pfl - ps' 

possibilities for row k5 (i.e., any row vector not in the (s - 1)-dimensional space 
spanned by rows 1,... ,ks -1) andps possibilities for each of rows ks + 1,... ,ks + is 
(i.e., any row vector contained in the space spanned by rows 1,..., ks). Thus, for a 
given (r + 1)-tuple (io0, .. . i,) the number of possible matrices M is 

li(( p ) ( - p5tI) .). n (1 - pr-I )( pr)li,. 

Now allowing for all (iO, ',I ... .ir) satisfying Eq. (2.1) with each is 2 0, we get 

r 

Nr + f (pn - pS-I )Psiij 
iO+i1 + ***+ir=m-r s= 

each is>0 

f l ( Fn p -I)] 2 ) 
j= 1 ~~~il + **+ir'-M-r s = I 

each i,aO 

Remark. Proposition 2.1 can be generalized to an arbitrary finite field with pk 

elements by replacing p by p 
We shall now restrict our attention to (t -1) X t matrices M over Fp, where p 2 3 

and t 2 2 are fixed. Since there are pt(t- 1) such matrices, the probability (which we 
denote by Rt,r) that a randomly chosen (t -1) X t matrix M over Fp has 
rank M = r is given by 

Rtr = pt(t-1) [I= j1 (I - t+ pt(tl i r) + ( si) 

each is>0 

In subsequent calculations it will be convenient to let e t - 1- r and Bt,e R,r 

(thus for example, e = O when r= t -1, and B, = R t, t Then 

For t > 2 and 0 < e < t - 1, we note that the probability Bt, e satisfies 0 < Bt, e < 1. 

LEMMA 2.2. 
t-B t-l 

2 eBt e < e(p -2)Bte < 1. 
e=O e=O 
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Proof. The first inequality is clear since we are assuming p 2 3. We now let 
t-I-e 

Wt, e fI pSl 
I1 I it-I1-e5E e S= 1 

each i,>0 

(For e t - 1, we interpret this as Wt, t- - 1.) For t > e > 1, we have 

W ?,e (1 + p +*** +p e) Wt- e-I 

t-e-1 
? 1+ p + ***+pt- 

I 
e)t W - Wt - 

t_ 
e- 

fte-I 

Using Eq. (2.2), we then get 

/ _ 1 p 1 p 1 ( p _ )t_ e 

Bt,eBt,e I Pe - +1). 1 < B teei -1 
p - I p ~~p - 

Then by induction we get 

Bt~e<(p~1)2e ~ )2e frte'1 
Bt, < 

p _1)Bto0 
< 

(p- ) 
for t >e >,- 

Finally 

t-I t-2e t- 

2 e(p - 2)Bt,e < E e(p - 2) < (P 
e=O ~~e-0 e-I 

I 
)e (p 

I 
)e-I 

tIl 1 001 

2e 2e-I 2e 
e=l e=l 

Remark. If X is a random variable which assumes the value e (0 < e < t - 1) with 
Prob(X = e) = Bt,e then the expected value E(X) = Y.-' eBt e < 1 according to 
Lemma 2.2. It then follows that for an arbitrarily chosen (t - 1) X t matrix M over 

Fp, the expected rank is greater than t - 2. 

LEMMA 2.3. Let t : 2 be arbitrary. For p = 3, B,0 > .840; for p = 5, Bt, o> .950; 
forp =7,Bt0> .976; and for p l1, B, >.99. 

Proof. For allp > 3, B,'0 = lIt(l - l/pt +'-) from Eq. (2.2). By letting k = t + 
1 -j, we get Bt,0 IIk=2(1 - l/pk). Now for all t > 2, 

Bt'0 
> fl I- 1 1) 1 -2:: 
k=- 2( p 

k 
k-2 pk p p - I 

) 
2 

p 

When p > 11, it is clear that Bt0 > .99. For the cases p = 3, 5,7, the product 
fl T= 2- l/pk) was evaluated numerically to three decimal places to give the above 
results. 

Table 2.1 gives values for B,e when t = 2, 3, 4 and p = 3, 5, 7, 1 1. 
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TABLE 2.1. Values of Bte 

e 0 1 2 3 

P = 3 2 .8889 .1111 
3 .8560 .1427 .0014 
4 .8454 .1526 .0020 2 X 10-6 

p = 5 2 .9600 .0400 
3 .9523 .0476 .0001 
4 .9508 .0491 .0001 4 X 10-9 

p = 7 2 .9796 .0204 
3 .9767 .0233 8 X 10-6 
4 .9763 .0237 1 X 10-5 7 X 10-" 

p = 11 2 .9917 .0083 
3 .9910 .0090 6 X 10-7 

4 .9909 .0091 6 X 10-7 3 X i0-'3 

LEMMA2.4. For all t > 2 andp > 3, B,O + B,I > .99. 

Proof. Since B,, O> .99 if p > 11, it suffices to consider p -3, 5, 7. We claim that 

B,+ 1 I > B, 1 for all p - 3 and t > 2. To show this, we use Eq. (2.2) to get 

B+ = B+ ) p t-2 + +p + 

B (Pt+'-l)(pt-' + .*--+p+ 1) 
pt+2(pt-2 + ... +p + 1) 

p 2t + p2t- I + ...+ pt+ I_ pt- I - pt-2_..._ 

t= l p2t + p2t1 + ... 

> Btj 

since pt+I - pt-I - pt-2 I *-1 > 0. We now apply Lemma 2.3 and the results 
from Table 2.1. If p = 7, then for t 2, B,o + Bt1 > .976 + B21 > .99. If p - 5, 
then for t > 2, B,o + Btj > .950 + B21 = .99. If p = 3, then for t - 4, BtO + Bt, > 

.840 + B4 1 > .99. Also from Table 2.1 we see that B20 + B2,1 > .99 and B30 + B331 
> .99. Hence the proof of Lemma 2.4 is complete. 

3. Ranks of p-Class Groups. We first let K be a Galois extension of Q of degree 3, 
and we let A be the 3-class group of K. We assume that exactly t primes ramify in 
K/Q, where t > 2, and we let fK denote the conductor of K. (Remark: The prime 
divisors of the conductor are the ramified primes.) Employing the techniques 
described in Chapters IV and VI of [4], we see that v = rank A -2(t - 1) -r, 
where r is the rank of a certain t X t matrix of Hilbert symbols, and we may think of 
this matrix as a t X t matrix over F3. Because of the product formula for Hilbert 
symbols, the last row of the matrix is completely determined by the preceding 
(t- 1) rows; hence we are considering a certain (t - 1) X t matrix M over F3 
associated with K. From [2] and [3], we see that M is equally likely to be any 
(t- 1) X t matrix over F3 in the following sense. Let x be a large positive real 
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number, and let S K I exactly t primes ramify in K/Q and the conductor 

fK x X}. Assume Sx has the counting measure, and let Wx be the function which 
assigns to each K C Sx the associated matrix M. If H is an arbitrary (t - 1) X t 
matrix over F3, let V,(H) be the probability that Wf takes the value H. Then 
VI(H) - 1/3(t- 1) as x - oo. The fact that this limit probability is the same for all 
H is the reason we say that each possible choice for M is equally likely. 

Now let Nr be the number of (t - 1) X t matrices over F3 that have rank = r, 
where 0 s r < t- 1. Let Yx be the random variable which assigns to each K E Sx 
the rank of the matrix M associated with K. Then Prob(Yo = r) Nr/3t(t- 1) as 
x x oo. Now recall that the 3-class group A of K has rank satisfying 

v = rank A =2(t - 1) - r =t- 1 + (t - 1 - r)=t - 1 + e, 

where we have set e - t - r. Then the following proposition is a consequence of 
our results from Section 2. 

PROPOSITION 3.1. Let an integer t : 2 be fixed, and let x be a positive real number. 
Let S. be the set of all cubic Galois extensions K of Q with exactly t ramified primes 
over Q and conductor fK s x. Assume S, has counting measure. If Z. is the random 
variable which assigns to each K C S. the rank of the 3-class group of K, then 
Prob(Zx = t-1 + e)- Bt,e as x -x , where Bte is given by Eq. (2.2) with p = 3, 
and O < e < t - 1. In particular 

Prob(Z, = t- 1) > .840 and Prob(Z, = t- Ior t) > .99 

for all sufficiently large x. 

Remark. For t = 2, 3, and 4, we can use Table 2.1 to get the limit probabilities for 
v = rank A = t - 1 + e. For example, when t = 2, Prob(Z, = 1) is approximately 
.8889 for large x. 

Remark. When rank A t - 1, it is known that A is an elementary abelian 
3-group (cf. [4]). Since Prob(Z, t - 1) > .840, most cubic Galois extensions of Q 
with t ramified primes have elementary abelian 3-class groups with rank = t - 1. 

From Lemma 2.2, the fact that v = t - 1 + e, and the fact that Bt 0 < 1 for t > 2, 
we get the following result. 

PROPOSITION 3.2. With assumptions as in Proposition 3.1, t - 1 < E(ZX) < t for all 
sufficiently large x, where E(Z,) is the expected value of Z,x 

For these cubic Galois extensions we can also obtain the following result. 

PROPOSITION 3.3. Let assumptions be as in Proposition 3.1. Let Lte,x be the number 
of elements K in the set Sx whose 3-class group has rank = t - 1 + e, where 0 s e e 
t - 1. Then 

Ltex Bte - I-x(loglogx)tl 
t,e,x te 2 (t- 1)!logx 

(Here F(x) - G(x) means F(x)/G(x) -- 1 as x -x oc.) 

Proof. The factor 

1 x(loglogx)t'i 
2 (t-1)!logx 
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is an asymptotic estimate for the number of elements in S, (see [31 for details), and 
the factor B, e is introduced because we are counting only the elements K of S, that 
have 3-class group with rank t - 1 + e. 

We are now ready to consider primes p ?> 5. We suppose that K is a Galois 
extension of Q of degree p; A is the p-class group of K; t is the number of primes 
that ramify in K/Q (and we are assuming t ,> 2); fK is the conductor of K. Then 
employing the techniques from [4], we see that v = rank A satisfies t - 1 + e < v ? 

t - 1 + e(p - 2), where e t - 1 - r and r is the rank of a certain (t - 1) X t 
matrix over Fp. Thus for p ?> 5 we have the inequalities t -1 + e < v < t-1 + 
e( p - 2) instead of the equality v = t - 1 + e. However when e 0 O, we do have 
the equality v = t - 1, and from our calculations in Section 2, we know that the 
cases e = 0 has the highest probability. Using our results from Section 2, we can 
obtain the following result. 

PROPOSITION 3.4. Let p > 5 be a prime number. Let an integer t ,> 2 be fixed, and 
let x be a positive real number. Let Sx be the set of all Galois extensions K of Q of 
degree p with exactly t ramified primes over Q and conductor fK < x. Assume S, has 
counting measure. If Zx is the random variable which assigns to each K E S, the rank 
of the p-class group A of K, then Prob(Zx = t - 1) -* B,o as x - oc, where B,,( is 
given by Eq. (2.2). In particular, for all sufficiently large x, Prob(4Z, t - 1) > .950 
(resp., .976; resp., .99) when p = 5 (resp., p = 7; resp., p >? 11). Furthermore t - 1 < 

E(Zx) < t for all sufficiently large x, where E(Zx) is the expected value of Zs. Finally 
if L, is the number of elements K in Sx whose p-class group has rank t - 1, then 

1 x(loglogx)' 
Lt xBt- p-i (t -I)! log x 

Remark. When rank A t - 1, it is known that A is an elementary abelian 
p-group (cf. [4]). Thus most Galois extensions of Q of degree p with t ramified 
primes have elementary abelian p-class groups with rank = t - 1. 
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